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ABSTRACT 

The meaning of probabilistic weather forecasts is discussed from the point of view of a subjectivist concept of 
probability. The prior degree of belief of probabilities of the weather in question, for a given forecast statement, is 
expressed analytically as a beta function. Bzyes’ theorem is used to modify this degree of belief in the light of expe- 
rience, producing a posterior degree of belief which is also in the forin of a beta function. By establishing an arbitary 
criterion that one should always be able to  assign at least as much belief to the probability interval implied by the 
forecast as to any other equivalent interval, a method of quality control for probability forecasts is developed. Ap- 
propriate tables are given to permit application of the method, and the implications of the method, for both forecaster 
and forecast user, are discussed. 

1. INTRODUCTION 

Increasingly, weather forecasts are being stated in terms 
of probabilities. There are numerous reasons for such a 
trend, but primarily this is being done because such prob- 
ability statements are more useful than the conventional 
forecast to a broad segment of the users of the forecasts. 
The evidence for this is so clear (e.g., Thompson [SI, [9]; 
Thompson and Brier [lo]) that the wide use of probability 
statements would certainly have occurred much sooner, 
were it not for uncertainties regarding the use and inter- 
pretation of these statements on the part of the public 
and especially on the part of the meteorologists who must 
issue them. It is not reasonable to expect the meteorolo- 
gist to use a language for communicating with the public 
if the meaning of the language is not clear to him. It is 
the purpose of this paper to examine the probability 
statement as it is normally used in forecasting, and to 
discuss its meaning and interpretation. Further, we shall 
present a set of guidelines by which the forecaster 
can judge whether his forecasts are adhering to  some 
minimum standards. We will also point out how the use 
of such a system of quality control should contribute to 
confidence in and correct interpretation of the forecasts 
on the part of the using public. 

I This research was supported in part by the U.S. Department of Commerce, Envi- 
ronmental Science Services Administration, Weather Bureau under contract CwMG847. 

* Publication No. 98 from the Department of Meteorology and Oceanography, The 
University of Michigan. 

2. AN INTERPRETATION 
OF THE PROBABILITY STATEMENT 

The conceptual basis of our consideration of this prob- 
lem is the “subjectivist” view of probability (e.g., 
Savage [ 6 ] ;  Schlaifer [7]). It is not possible to expound, 
here, on the details of this approach, but we will merely 
point out that this view corresponds well with the manner 
in which the term “probability” is used in everyday con- 
versation. The emphasis, in this definition of probability, 
is on how it is used, and not, as in more classical ap- 
proaches, on how it was derived. A number, between 
zero and one, can be a probability, if an individual is 
willing to assign that number as the ‘(degree of belief” 
(Lindley 141) he holds that the event will occur, and to 
act accordingly. There is no need to  consider, even con- 
ceptually, a lengthly series of trials to determine the rela- 
tive frequency of the event. This view of probability is 
especially useful and meaningful when applied to  problems 
of decision-making (e.g., Epstein 121). Thus it is an ap- 
propriate view to take in discussing meteorological prob- 
abilities, which we provide, after all, to  help others make 
decisions concerning weather-sensitive activities. Also, 
the axiomatic treatment of probabilities which has ap- 
peared in probability texts (e.g., Feller [3]) for many years, 
and the resulting theorems and formulae, are equally 
applicable to probabilities having a (‘personal” or “sub- 
j ectivist” basis, 
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The term “subjectivist” as used here should not be 
confused with the term “subjective” as used in contra- 
distinction to  “objective” and also applied to meteoro- 
logical probabilities. The latter term refers to the manner 
in which the probabilities are derived; the former to the 
manner in which they are used or interpreted. From a 
subjectivist point of view, a probability must be believed 
to be meaningful. In general, I am far more likely to 
believe the probability suggested by a well-tested objective 
system than one based on an ill-defined subjective evalu- 
ation. On this basis my own personal probability (or the 
reader’s, I suspect) will in general agree more readily with 
objectively, rather than subjectively, derived forecasts. 
In the same vein, the meteorologist issuing a forecast 
should believe his statement; it should be his personal 
probability whetber or not it is wholly subjectively or 
objectively derived. Indeed, this is a good argument for 
the normal procedure of providing the forecaster with 
objective probabilities as guidance material, and allowing 
him to issue modified statements according to his further 
subjective judgment and belief. 

For example, a forecaster may state that the probability 
of rain tomorrow is 0.3. The number, 0.3, should measure 
his “degree of belief” in the event, rain tomorrow. To the 
extent that the statement corresponds to the fore- 
caster’s belief, the forecaster implies that he would be 
indifferent between an outright gift of $3 or the chance to 
get $10 if and only if it  rains tomorro~v.~ If, for the 
forecaster, the probability of rain tomorrow were greater 
than 0.3, he would choose the second option and vice 
versa. One could test whether or not a forecaster believes 
what he says by offering him such options and observing 
his actions. If there is a discrepancy, then the forecaster 
is not being honest and the stated number is not the 
probability, to him, of rain tomorrow, and may not be 
such a probability to anyone at  all. However, this is not 
proper behavior for a forecaster. We must and shall 
expect our forecasters to be honest, both to themselves 
and to the public. Thus the number used by the fore- 
caster is assumed to be his probability and the only 
evidence we require is his statement to that effect. 

On the other hand an individual, say an ice cream 
vendor, may feel a twitching in his elbow whicb he usually 
accepts as a certain indicator of rain. Perhaps he should 
not even open his stand in the LOO tomorrow. Upon 
hearing the forecast, though, he decides to order a small 
supply of ice cream. In so doing, he is acting as though 
there were a relatively large probability of rain. For the 
sake of argument let us assume that his actions are those 
he would take if the probability of rain were 2/3.4 So 
long as he acts in this way, then the probability of rain 
tomorrow i s ,  for him, 213. 

~~ 

3 Put in other terms, the forecaster is saying, “the odds are 3 to 7. Place your money 
and take your pick.” We are assuming here that the utility of cash is linear over the 
amounts involved (cf. Schlaifer [7], pp. 41 ff.; Epstein 121). 

4 The quantification is ours, and we introduce it for the sake of clarity of exposition; 
the businessman must quantify his order but rarely will he quantify his reason for that 
order. 

PROBABILITY P 

FIQURE 1.-One possible graphical statement of “degree of belief” 
when the forecaster’s statement is p=0.3 .  

This example is not meant to imply that the user’s 
meteorological judgment is better than, or even as good 
as, the forecaster’s. But the user can and does make such 
judgments, and the probabilities he uses (whether or not 
they are explicitly stated) in making his decisions are as 
valid (in the sense of the meaning of probability, but 
likely not in the sense of verification) as those stated by 
the forecaster. The example also illustrates that the 
forecaster’s stated probability wil l  not, and indeed need 
not, be always taken a t  its face value by the user. 

To illustrate this point further, let me examine what the 
forecaster’s statement might mean to me. I assume here, 
for the purposes of argument, that this is a subjectively 
derived forecast, made by a trained and experienced fore- 
caster, but that I have no knowledge of the forecaster’s 
previous forecasting record or previous verification scores. 
Hearing the statement, 0.3, I am not a t  all confident that 
the probability of rain is exactly 0.3; I would not be terri- 
bly surprised if the probability were 0.2, or perhaps even 
0.5. On the other hand, I would state, almost with cer- 
tainty, that the probability of rain tomorrow is not 9/10. 
In  other words, having heard the forecast, I have a mental 
image of my own (‘degree of belief” in what the probability 
of rain really is. This image might be represented by the 
curve in figure 1. 

The more confidence I choose to place in the forecaster, 
the sharper the peak in my curve will be, and the more my 
belief will be concentrated near the stated probability. 
Indeed, if I knew the forecast had been based on an ob- 
jective scheme in which I had confidence, my curve might 
be considerably more peaked. The area under the curve 
between any two values of the abscissa represents the ex- 
tent to which I believe that the probability of rain falls 
between those two limits. Since I am certain that some 
probability between zero and one is the right one, I should 
place a scale on my degree of belief such that the area 
under the curve equals unity. Also a negative degree of 
belief would have no meaning to me, so I draw the curve 
so that it is everywhere either on or above the horizontal 
axis. 
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A curve, or function, which has these properties is a 
probability density function. I will refer to it as the prior 
density of the probability of rain p ,  when the stated or 
forecast probability of rain is p .  It is especially helpful 
to express the prior density in some convenient analytic 
form, f ( p ) .  Since there is no a priori reason to expect 
the forecaster's judgment to be biased, it is reasonable to 
choose a formula such that the mean (or expected) value 
(J"pj(p)dp) of the probability of rain implied by the 
function is equal to P ,  the stated probability. I also in- 
clude an adjustable parameter ( L )  which allows me to 
control the level of confidence I am willing to place in the 
forecaster. It is my hope that any reader, by choosing an 
appropriate value of L, will be able to use this particular 
functional form to give a prior density curve which 
corresponds sufficiently to his relative degree of belief. 

3. ANALYTIC FORM FOR THE PRIOR DEGREE OF 
BELIEF 

The analytic form that I choose for the prior density of 
p ,  the probability of rain for a particular forecast proba- 
bility, p ,  is 

. .  

( 1 1 5  

defined only for O < p < l  and L>O. In figure 2 are plots 
of several representative prior distributions for different 
values of L and p .  Note the wide variety of ihapes the 
density can take for different parameter values. I might 
point out that my own prior densities seem to correspond 
best to L = 1 0 .  

Equation (1) is not a valid probability density for p = O  
or p = l ,  since then its integral between zero and one does 
not converge. For these cases the following functional 
forms are suggested : 

( 3 )  

Equations ( 1 ) - ( 3 )  are examples of beta density func- 
where e is a small positive number. 

tions : 

The mean value of p is a/(u+b) and its variance is 
a r 3 / [ ( ~ + 6 ) ~ ( u + b + l ) ~ .  Thus the mean of ( 1 )  is p and the 
variance is p ( l - p ) / ( L + l ) .  For ( 2 )  and ( 3 )  the means 

The vertical bar within parentheses is standard notation for conditional probabilities; 
e.g.,f(plp) means the density o f p  for a given value of p, The terms F ( X )  representgamma 
functions. When X is a positive integer r(X)=(X-l)! and generally r ( X ) =  
(X-l)F(X-I). When Xjsnot an integer the value of the function may be taken from 
a table of the gamma function. 
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FIGURE 2.-Analytic form of prior degree of belief for several pairs of 
values of the parameters L and p .  

are E and 1 - 6 ,  respectively, and the variances are both 
e ( 1 -  E ) / @  + 1 )= r/(L+ 1 ). 

4. REVISION OF THE PRIOR DEGREE O F  BELIEF 
IN THE LIGHT OF EXPERIENCE 

A standard forecast procedure is to permit the forecaster 
to make statements only in the form p=O.O, 0.1, 0.2, . . ., 
0.9, 1 . 0 ;  i.e., he must state the probability of the weather 
in tenths. Once one has observed the forecaster's per- 
formance over some period of time it is reasonable that he 
should use that experience to revise his judgment as to 
what the statements mean to him. For example, if a 
forecaster has made the statement p = 0 . 3  with regard to 
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rain on ten occasions, and rain subsequently occurred six 
times, I would then consider it far more likely that the 
probability of rain, when this forecaster says p=0.3, is 
really 0.5, than that the probability of rain is 0 .2 ;  although 
previously, I might have thought that probabilities 0.2 
and 0.5 were about equally likely. 

The procedure which one follows in revising his estimate 
of the relative likelihood of the probabilities is based on a 
fundamental theorem of probability, known as Bayes' 
Theorem, which can be written 

(4) 

Simply stated, this theorem states that one's degree of 
belief that a particular hypothesis (H;  say that Ip-pI< 
O.l),is true, once some data (0) are available, P(HID), is 
proportional to the product of one's degree of belief in the 
hypothesis, P(H),  times the probability that the pa,rticular 
set of data would have occurred if the hypothesis were 
true, P(DIH). The term P(D)  is a proportionality factor 
which is easy to evaluate and otherwise of little signifi- 
cance. For example, on the basis of the hypothesis ( H I )  
that the probability of rain is 0.2, the probability of six 
occurrences of rain in ten times (the data, D) is, from the 
binomial distribution, 

10' P(DIH1) =& (0.2)a(0.8)4=0.0055. 

If the hypothesis were H,, that the probability of rain is 
0.5, then the probability of six occurrences of rain in ten 
times would be 

lo! 
P (01 e,) =m (0. 5)6 (0.5) =O .2050. 

If, for the sake of argument, my prior judgment had been 
that p = 0 . 2  was twice as likely as p=0 .5  (when t,he 
forecaster said p=0.3), i.e., P ( H 1 ) = 2 P ( H 2 ) ,  then my 
posterior judgment would be that p=O.2 is only 

times as likely as p=0.5. 
It is worth pointing out here that psychologists have 

fonnd'that people, in general, can make quite good intni- 
tive judgments with regard to simple probabilities. 
However, when faced with a problem requiring the 
revision of these probabilities in the light of subsequent 
information, the same people exhibit rather poor intuitive 
judgments (Edwards [l]). Consequently, it is well that 
one should approach in a formal way this problem of 
revising prior beliefs in the light of subsequent information. 

5. A N A L Y T I C  F O R M  F O R  THE POSTERIOR 
DEGREE O F  BELIEF 

We wish 
to determine a corresponding function representing our 

Once again, let f(pIp) be the prior density. 

degree of belief, g(p(p,n,r) after the forecast probability 
p has been stated n times, and the particular event (say 
rain, or subminimal ceiling) has subsequently occurred 
r times. We shall rewrite Bayes' Theorem, equation 
(41, as 

(5 )  
J ~ ( P I P ) x ( ~ ;  n, PMP 
0 

where X(~ ;n ,p )  is identified with P ( D J N )  in equation (4) 
and is the probability of r occurrences, in n trials, of an 
event whose probability of occurrence on a single trial is 
p .  This is, of course, the binomial distribution 

n! 
r!(n-r)! X(r; n, p )  = p' (1 -p)  n - r .  

We also identify g(p)p,n,r) with P(HID),f(plp) with P ( H ) ,  
the prior probability of the hypothesis; P(D),  the pro- 
portionality factor, becomes the denominator in equation 
( 5 ) .  Substituting, in (5), both (I) and (6), gives 

. (7) 

The posterior density, g(plp,n,r) ,  like the prior, is a beta 
density, when the likelihood, X(r; n, p ) ,  is binomial. The 
analytic sjmplicity and symmetry of this result is one of 
the reasons for choosing the beta density as the form of 
the prior -degree of belief. 

n and r are specified, is 

x p L p + r - l  (1 - p ) L (  1 - p )  +n - r - 1 

The posterior mean value of p ,  pg(plp,n,r)dp, once 

a weighted average of the prior mean, p, and the observed 
relative frequency, r/n. On this basis it is possible to 
interpret L as the equivalent number of observations, 
with relative frequency p, of the event in question, with 
which one is willing to  credit the forecaster, a priori. 
The posterior variance 

decreases with both L and n. As data accumulate there 
is a decreasing range of p over which one has a subsiantial 
degree of belief. Also, as n increases, the importance of 
the parameters of the prior density decreases; E(plp, n, r )  
approaches rJn, and Var ( p l p ,  n, r )  approaches [(r /n) 
(1 -rln>lln. 

If the prior densities (2 )  and (3),  rather than (I), are 
used in (5 ) ,  the resulting posterior distributions are 
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FIGURE 3.-Examples of posterior degree of belief for p=O.2 and 
n=5. 
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FIGURE 4.-Examples of posterior degree of belief. 

Some posterior distributions for various combinations 
of p, L, n, and r are shown in figures 3 and 4. One of 
the things to note is that for large n, not only does L 
become unimportant but also, in a sense, the value of p 
becomes unimportant. If, following 50 out of 100 times 
when a forecaster says p=O.1, i t  rains, then I will choose 
to interpret his statement, “ p = O . l , ”  as saying, for me, 
“the probability of rain is 0.5.” 

It may seem absurd that a forecaster would allow such 
a situation to arise. But we might have taken a less 
extreme example, in which case there would be con- 
siderable doubt as to whether the forecaster was biased 
in his estimations of the probabilities, or whether, by 
chance, an unusual series of events had occurred. In 
any case it would appear wise that the forecaster (and 
his supervisor) have some means to check on and elimi- 
nate such biases before they could possibly become so 
severe. The forecaster, as well as the forecast users, can 
reinterpret his statements. On this basis the forecaster 
should reinterpret first, revise his own belief, and, to 
remain honest, revise his statement. In this way the 
above situation should never arise. Furthermore, the 
user of the forecasts is not likely to maintain a complete 
set of records, and it would be most unfortunate if he 
chooses to believe p=p=O.l,  when he should believe 
p=0.5#p.  Also, if the user does keep records, we 
would like these to reflect favorably on the weather 
services. 

6. QUALITY CONTROL FOR PROBABILITY FORECASTS 

Before the forecaster began his predictions we had as- 
signed a prior degree of belief to  the various probabilities, 
depending upon what statement the forecaster would make. 
One way in which to look at the prior density is to con- 

9 

sider the degree to which we believed, a priori, that the 
probability actually falls within the interval implied by the 
forecast statement; i.e., Prob {p--6/2<p<p+-6/2}, where 
6 is the interval between standard values of the probability 
that are used in the forecast statements. From (1) we 
can compute 

Some results are shown in table 1. Similar results could be 
tabulated after a series of forecasts had been made. We 
show, for example, in table 2,  the posterior likelihood that 
(p -pJ<0 .05 ,  for L = 5 ,  n = 5 .  

After five statements, “p=0.3,” for example, we con- 
sider it more likely than previously that 0.25<p<0.35, if 
there were either one or two occurrences of the pertinent 
weather. If the pertinent weather had occurred on all five 
occasions, our belief that p=0.3 means 0.25<p<0.35 is 
only about 1/45. Indeed, for the particular case L = 5 ,  
p=0.3,  n=5, values of r of 4 or 5 make it appear so unlikely 
that p is in the interval implied by the forecast statement, 

TABLE l.-Prior likelihood of (p-0.05<p<pf0.061 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 . 0  

0.862 
.269 
,206 
.182 
.172 
.169 
.172 . 
.182 
,206 
.269 
.862 
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Number of 
occurrences 
of pertinent 
weather r 

0 
1 
2 
3 
4 
5 

Forecast probability p 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.924 0.246 0.157 0.113 0.083 0.059 0.039 0.022 0.009 0.002 0.W 
,310 ,409 .299 .235 ,188 ,148 .I12 .077 .043 ,014 . OOO 
,056 ,223 ,258 .259 .248 .230 .207 ,175 .132 .070 .006 
.@I6 . WO ,132 .175 .2W ,230 .248 .259 ,258 .223 .OM . OOO .014 .043 ,077 .112 .148 ,188 .235 .299 .409 .310 
,000 ,002 ,009 .On .039 .059 ,083 .113 .157 ,246 ,924 

-__--____________- 

that we can tell at  a glance that there must be another in- 
terval of p ,  of the same size, which is more likely, a poste- 
riori. In general, a statement of this sort can be made 
whenever 

which is equivalent to saying that experience suggests 
strongly that the forecaster’s probability statements are 
biased. We have used this somewhat arbitrary criterion 
to define a “limiting permissible range of r”, for various 
values of n, p, and L. Results are given in table 3. Values 
of r falling outside these limits can be taken as evidence 
that the methods of estimating the probabilities are 
biased and require some adjustment. One can look 
upon table 3 as forming the basis of a technique for 
quality control of probability forecasts. 

It seems unlikely that the limiting values in this table 
will often be reached. A forecaster will (and should) 
generally keep a tally on his own performance. Consider 
a forecaster for whom L=5. If, for example, after four 
forecasts in which he has stated p=0.3, he finds no ob- 
served cases of the pertinent weather, he will be con- 
cerned over the possibility of bias, but not overly so, 
since he knows that (a) zero successes out of four trials 
when the probability is actually 0.3 is not a very unlikely 
event (probability equals 0.240), and (b) even if the 
weather does not occur the next time he states 0.3, he 
will still lie within the indicated permissible range. On 
the other hand, if the same results (n=4, r=O) had 
occurred for statements p=0.4, the same forecaster would, 
and should, be more concerned. Indeed, it is considerably 
less likely that no successes would occur after four trials 
with p=0.4 (probability equals 0.130). Very likely, the 
next time he states “p=0.4”, he will believe p>0.4 
according to his original method of estimating, but he 
will be adjusting his method of estimation to avoid 
falling outside thelower limit, ~ = l ,  for n=5, p=0.4, L=5. 
Put another way, the forecaster is now revising his prior 
judgment on the basis of his experience. On the basis 
of the earlier forecasts? though, it is reasonable that tlhe 
forecaster should now consider his earlier estimates of 
p=0.4 as overestimates of the probability, and he should 
include in that category situations with greater likelihood 
of the particular weather event in question. Note, also, 

TABLE 3.-Limiting permissible range of r 

Number of Forecasts n 
Forecast 

Probability P i 5  10 15 20 25 50 

0.0 
0.1 
0. 2 
0.3 
0.4 
0.5 
0. 6 
0.7 
0.8 
0.9 
1.0 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0.0 
0.1 
0. 2 
0.3 
0.4 
0. 5 
0.6 
0. 7 
0.8 
0.9 
1.0 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0.0 
0. 1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

L=5 

0-2 
0-3 
0-3 
1-4 
1-4 
1-4 

li-i 
1-6 
M 
3-9 
5-10 
6-12 

2-8 
3-10 
5-12 
6-14 
8-15 

2-9 
4-12 
6-14 
8-17 

11-19 

1-11 
5-17 
9- 22 

13-26 
18-32 
24-37 

2-5 4-9 7-13 1L17 13-21 2R-41 ~. ~ 

z5 5-9 Q-ii 12-18 i6-23 33-45 
3-5 7-10 11-15 15-20 19-24 39-49 
3-5 8-10 12-15 17-20 22-25 45-50 

0-2 0-3 0-3 0-4 0-5 0-8 
c-3 0-5 1-6 1-8 1-10 4-18 
1-4 2-7 s i n  4-12 h i 5  12-2s 
14  3-8 5-13 8-16 10-19 2238 
2-5 E-10 9-14 12-19 15-24 32-46 
5 5  7-10 l e 1 5  16-20 ‘20-25 42-50 

- 

6 ~ 0 . 1  

6=0.2 

L=10 

0-2 0-2 0-3 0-3 0-4 M 
0-3 0-4 0-5 w 0-7 1-11 
0-4 0-5 1-7 1-5 2-10 4-17 
0-4 1-6 1-8 2-10 3-12 9-22 
0-4 1-7 3-10 4-12 .515 13-27 
0 - 5 2 4  4-11 6-14 5-17 17-33 
1-5 3-9 .&12 R-16 1c-m 2%37 ._  .. . .~ i3-ii 28-4i 
1-5 4-9 7-14 1% 
1-5 5-10 8-14 12-19 15-23 33-46 
2-5 6-10 10-15 14-20 18-25 3 M 9  
3-5 3-10 12-15 17-20 21-25 44-50 

0-2 0-3 0-4 0-5 0-5 0-8 
0 4  0-5 0-7 1-9 1-10 3-19 
0-5 1-7 2.10 4-13 5-15 12-’22 .. ~. 
0-5 3-9 5-i3 7-16 16-20 ii-3R 
1-5 5-10 8-15 11-18 15-24 3147 
3-5 7-10 11-15 15-20 20-25 42-50 

L=20 

0-4 0-3 0-3 0-4 0-4 w 
0-4 0-5 0-6 0-7 0-8 0-12 

1-11 4-18 0-5 0-6 0-8 0-9 

0-5 0-8 1--11 3-13 4-16 12-23 
c-5 1-9 3-12 5-15 7-18 17-33 

0-5 0-7 0-9 1-11 2 1 3  8-B 

6-5 2-10 4-14 7-17 9-21 22-38 
0-5 3-10 6-15 9-19 12-23 2742 
0-5 4-10 7-15 11-20 14-24 32-46 
1-5 5-10 9-15 13-28 17-25 38-50 
1-5 7-10 12-15 16-20 21-25 44-50 

6=0.1 

8=0.2 

- 
- 

6=0.1 

c - 3 0 - 4  0-5 0-5 cu3 
0-5 0-7 0-8 

0-5 3-10 7-15 10-20 13-25 30-48 
2-5 6-10 10-15 15-20 19-25 41-50 

0-5 0-5 - 0-9 l-lo ;;; 

that if the forecaster had greater self-confidence, he 
would have had less urge to modify his procedure. In- 
deed for L=10, n=5, p=0.4, the value r=O is within the 
permitted range. 

This table, then, serves best as a guide to the forecaster 
to help him keep tab on his probability statements, and 
to keep him from issuing biased statements. Again, as n 
gets large, the value of L loses significance, and the fore- 
caster’s subsequent experience outweighs any prior 
judgment concerning his abilities. 

7. IMPLICATIONS OF QUALITY CONTROL 
FOR THE FORECAST USER 

From the user’s point of view, the most important 
single aspect of a probability forecast is the expected 
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Forecast 
Probability 

value, E(p) .  He will normally use the forecast statement 
as though it were the expected value. In other words he 
will act as though E(plp, n, r )  = p, even though he has no 
knowledge of n and r .  Indeed, he will in effect be using 
only his prior distribution, for which E(pIp)= p .  It is 
instructive to examine the ranges of E{p(p,n ,r) which 
might result if the forecaster manages to adhere to the 
limits given in table 3. These values are easily derived 
from table 3 by applying equation (8). Some results are 
shown in table 4. 

For very large n, the values in table 4 should approach 
p f 0 . 0 5 ,  but we can see by examining the actual results 
that this limit is approached quite slowly. Nevertheless, 
even for small values of TI, the posterior expected value 
of p never can differ by more than about 0.2 from p, if the 
forecaster stays within the limits of table 3. For n220,  
Ip-E(plp, n, r)1<0.13. This means, to the user of the 
forecast, that he need not keep a record on the forecaster’s 
performance, for the expected value of p that he would 
believe, if he had all the information contained in 
that record, will never be very different from the value 
he believes ( p )  by simply accepting the forecaster’s state- 
ment. In other words, this method of quality control 
acts as an assurance to the customers that they will not go 
very far wrong by accepting the forecasts at  their face 
value. 

&-lo 

Number of Forecasts n 

T-C 

Number of Forecasts n 

8. CONCLUSIONS 

Probability statements in weather forecasts are slowly 
becoming the rule instead of the exception. In spite of 
their clear superiority over categorical statements as a 
tool in the decision-making process, lack of understanding, 
largely on the part of meteorologists, and lack of confidence 
in their acceptance by the public, have impeded their 
general introduction. In the present paper I have 
attempted to  overcome, at least in part, some of the 
meteorologists’ reticence to use the language of probability. 

On the basis of a logical and self-consistent interpreta- 
tion of the meaning of the probability statement, a guide 
for the control of the quality of these statements has been 
developed. The forecaster, by use of this guide, can 
adjust his own judgments in the light of his personal 
experience, and at the same time assure the public that 
his probability statements can be taken at  their face 
value; i.e., that they are essentially unbiased. 

In the course of our arguments we have had to introduce 
a certain degree of arbitrariness. Perhaps most serious in 
this regard is the use of a particular form for the prior 
degree of belief. There is no possible way of devising a 
universally acceptable prior density, and it is possible 
that many readers hold strongly divergent views. It is 
my opinion, however, that the prior density employed 
can be accepted as reasonable by most readers. Further- 
more I am confident that if one were to introduce any 
other reasonable prior distribution the results would be 

P I II- 
5 20 50 It 5 

I- i-----1-11----- 
o. o 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0. 7 
0.8 
0.9 
1.0 

0.01-0.20 
0.05-0.25 
0.10-0. 40 
0.160.55 
0.304.60 
0.354.65 
0.40-0.70 
0. 56-0.85 
0.60-0.90 ’ 0.75-0.95 
0.80-0. 99 

0. oo-o.09 
0.03-0. n 
0.11-0.33 
0.19-0.43 
0.27-0.51 
0.37-0. 63 
0.49-0.73 
0.574.81 
0.67-0.89 
0.78-0.97 
0.91-1.00 

20 

0. o(M. 13 
0.03-0.7.3 
0.10-0.33 
0.17-0.43 
0.27-0.53 

0.47-0.73 
0.57-0. a3 
0.67-0.90 
0.77-0.97 
0.87-1.00 

-_ 

a 37-0.63 

0. oa-0. 10 
0.05-0.20 
0.10-0.32 
0.204.42 0.28-0.52 

0.37-0.63 
0.48-0.72 
0.58-0.80 
0.68-0.90 
0.850.97 
0.951.00 
- 

essentially unchanged (although the mathematics might 
become considerably more difficult). 

Another point that I would emphasize is that the mini- 
mum standards for probability statements given in table 
3 do not guarantee an excellent score on any particular 
verification system. Certainly the forecaster who uses 
these controls will almost certainly have a probability 
score6 of lass than 0.5; i.e., the forecasts cannot be very 
bad. But forecasters can, in general, do considerably 
better (Sanders [5]), which points up the suggestion made 
earlier that in actual practice the forecaster, left to his 
own devices, would normally stay well within the control 
limits. 
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